ADPCM for Highly Intelligible Speech Synthesis

Copyright @ 1983 Steven A. Ciarcia. All rights reserved, Juni 1983 @ BYTE Publication Inc

posted 1 February 2002

Steve Ciarcia POB 582 Glastonbury1 CT 06033 Special thanks to Bill Curlew for his software expertise.

Some new integrated circuits from Oki Semiconductor compress digitized speech data efficiently.

Use ADFCM for Highly Intelligible Speech Synthesis

During the past few years I have presented four different computer speech-synthesizer projects (see references). With each article I have
tried to present the latest technology and describe successively more cost-effective synthesis methods. This month I'd like to describe a new
variation on digitized speech that uses adaptive differential pulsecode modulation.

What Is Digitized Speech?

 Computers communicate in a digital language, but the language of humans is analog. If computers are to speak as we do, this obvious barrier must be overcome. Fortunately for us, a number of techniques have been devised to allow a computer to synthesize a human voice, some of them quite effective

Some synthesized voices employ electronic circuitry to simulate the throat and vocal tract, but the purest form of machine-generated speech is simply a digital recording of an actual human voice, using digital circuitry to mimic the action of a tape recorder. For example, in most parts of the United States you can dial a telephone number and hear a recorded voice saying something like, " The number you have reached has been changed. The new number is 924-9281." The voice is distinctly human in quality, highly intelligible, and machine-generated an excellent example of digitized speech. Although it uses a lot of memory, digitized speech is the most intelligible machine-generated speech currently possible.

The basic concepts of producing stored digital speech are fairly simple. The process begins with data acquisition. A voice waveform can be treated like any other fluctuating voltage input; the computer can record the waveform by periodically taking a sample of the signal's voltage through an analog-to-digital (A/D) converter and storing it as a binary value. (The number of samples needed per second depends upon the frequency of the input signal.) Once the samples have been stored, the computer can recreate the original waveform by sequentially sending the stored values to a digital-to-analog (D/A) converter at the same rate as the original sampling.

Pulse-Code Modulation

A common method of representing continuous analog values in digital form is pulse-code modulation, or PCM. In PCM, distinct binary
representations (pulse codes) are chosen for a finite number of points along the continuum of possible states. When-ever the value is being
measured and it falls between two encoded points, the code for the closer point is used.

(This process is called quantization: the dividing of the range of values of a wave into subranges, each of which is represented by an assigned value.) A series of these pulse codes can be transmitted in a pulse train, resulting in a pulse-code modulated signal. Because the samples of digitized speech referred to above are stored in the form of digital pulses, the stored speech waveform can be thought of as an example of pulse-code modulation. Figure 1 shows a block diagram of a speech synthesizer that reproduces speech stored in pulse-code-modulated form.

Fig.1

Functional Block Diagram of a digitized speech-reproduction system that employs pulse-code modulation

SOURCE AUDIO WAVEFORM	AND AND	DIGITAL PCM CODE IGITAL IGITAL ONVERTER 0000
PCM CODES	SYNTHESIS	REPRODUCED AUDIO WAVEFORM

Sampling Rates and Other Messy Stuff

The sampling rate you use in recording any signal must be chosen with awareness of a theoretical limit called the Nyquist interval. At the very minimum, the sampling rate must be at least twice the highest frequency found in the input signal. With an input bandwidth of 2 kHz (kilohertz), adequate for intelligible speech, the sampling frequency would have to be at least 4 kHz.
 This rule holds strictly true only when an ideal lowpass filter is used on the output of the D/A converter.

The ear is sensitive, and too coarse a reproduction will sound unnatural or even unintelligible.

In real equipment, sampling rates of 3 or 4 times the input bandwidth are sometimes necessary. So for speech reproduction, a sampling rate around 6 or 8 kHz is good. (Optical digitized-music recordings, which are just now coming to market, use 16-bit AID conversion at a 50-kHz sample rate to achieve high fidelity. The resulting data rate is 800,000 bps-bits per second.)
 Other technical limitations crop up. Once you have determined the sampling rate, you must consider the resolution of the analog-to-digital converter. A/D converters operate in discrete steps (quanta) rather than continuous levels, as shown in figure 2.

Fig. 2

Waveform sampling by pulse-code modulation (PCM). The interval between samples is T0; the sampling frequency is the reciprocal of the interval. Each sample of PCM data consists of N bits; the leftmost is the most significant bit and the rightmost is the least significant bit.

If a 4-bit A/D converter is used, then only 16 values are available to define the signal. Any reading could potentially be in error by ca.1/16, or about 6 percent. A 12-bit converter, which has 4096 potential levels, would have a possible quantization error of only 0.02 percent.

Achieving Fidelity

- In dealing with analog voice signals, we must accurately reproduce a the input signal for it to be understood. The ear is sensitive, and too coarse a reproduction will sound unnatural or even unintelligible. A direct relationship exists between the PCM data rate and reproduced speech quality. Let's consider a case in which we have an 8-kHz sampling rate. If we use 12-bit A/D conversion, then the data rate (in bits per second) is found using the following equation:
- bit rate = sample rate X conversion bits
 8000 Hz X 12 bits
 96,000 bits/second
- Using standard PCM on a voice signal with a 4-kHz bandwidth would require a 96,000-bps data rate. The average personal computer could store only about 8 seconds of speech in its 64K-byte memory. The data rate can be reduced somewhat by using an 8-bit A/D converter rather than a 12-bit unit. The raw data rate now becomes 8000 X 8 or 64,000 bps. (This reduces the signal-to-noise ratio from 66 to 42 dB (decibels), but the sound quality is more than adequate for experimentation. For commercial applications, however, I recommend a 12-bit converter.)

Delta Modulation

The pulse-code modulation we have been examining uses no data compression. In playback, the data bits representing the absolute values of each successive signal sample are sent to a full-resolution D/A converter and reproduced at the same rate at which they were recorded: 96,000 bps in, 96,000 bps out. The circuit can operate with no assumptions made about the signal it is to process. On the other hand, voice waveforms contain much redundant data. Long periods of silence are interspersed with sounds that vary in pitch slowly. If you take some time to analyze the A/D samples, you will notice that the changes are, for the most part, gradual and that the variations in the signal between adjacent samples are a limited portion of the full dynamic range. One method of reducing the data rate used in PCM voice reproduction is called delta modulation. This process assumes that the input signal's waveform has a fairly uniform and predictable slope (rate of rising and falling). Rather than storing an 8- or 12-bit quantity for each sample, a delta modulator stores only a single bit. When the computer samples the input signal from the A/D converter, it compares

the current reading to the preceding sample. If amplitude of the new sample is greater, then the computer stores a bit value of 1. Conversely, if the new sample is less, then a 0 will be stored. Figure3 shows how this works.

Fig.3a

Waveform sampling by delta modulation. Each sample of the source waveform is tested to see if its amplitude is higher or lower (within the resolution of a fixed quantization value Ar-delta-r) than that of the previous sample. If the amplitude is higher, the single-bit delta-modulated encoding value is set to 1; if lower, the encoding value is set to 0.

Fig. 3b

Two potential problems occurring in delta modulation. When the source waveform changes too rapidly, the fixed quantization value may be too small to express the full change in the input; this slope overload causes a compliance error. Or when there is little change in the input waveform (at the exfreme, a DC signal), vertical deflection in the quantization value results in granular noise in the output.

Reproduction of the waveform is accomplished by sending the stored bits in sequence to the output, where their values are integrated. But, like other techniques, delta modulation has limitations, one of them the familiar sampling-rate restriction. Because only a single bit changes between samples, the rate at which samples are taken must be sufficiently fast that no significant information is lost from the input signal. Furthermore, if the slope of the input waveform varies a lot, the reproduced waveform may be audibly distorted. So using delta modulation may not reduce the data rate much, although there are many different variant schemes, and it's difficult to predict which is optimal in a given situation.

Competing Digitizing Methods

Competing Digitizing Methods

By the time you read this, you may have heard the results of a standardization proceeding that put two of the speech-digitizing methods discussed here in competition. (See reference 7.) American Telephone and Telegraph (AT & T), in the throes of beginning its divestiture of its 22 local Bell operating companies (BOCs), submitted a proposal to the CCITT (Comité Consultatif International Téléphonique et Télégraphique) to standardize a certain form of adaptive differential pulsecode modulation as the worldwide preferred method of digitizing voice telephone signals for long-distance transmission. The proposed CCITT scheme uses a 4-bit sampling size with an 8-kHz sampling rate, for a 32,000-bps overall data rate. This would be a change from the two different 64,000-bps digitizing systems now in use

A competing digitizing scheme, developed by Satellite Business Systems (SBS – a company jointly owned by IBM, Comsat, and Aetna Life & Casualty), employs delta modulation: 1-bit samples taken at a rate of 32 kHz, arriving at the same 32,000-bps data rate by a completely different route.

Standards published by the CCITT are called "recommendations," but they are quite strictly followed in most regions of the globe.

Telecommunication experts outside of AT & T have expressed concerns that the local BOCs and the independent long-distance common carriers will face both financial and technical problems in upgrading equipment to interface with the proposed CCITT 32,000-bps ADPCM circuits. At this writing, it is not known when AT & T will begin installing the new system..., R. S. S. • The most effective application of delta modulation that I have observed is the technique developed by Dr. Forest Moser at the University of California and implemented in the National Semiconductor Digitalker voice-synthesis chip set (see reference 1). However, while the Digitalker's process is definitely a variant of delta modulation, the data-compression and zero-phase-encoding algorithms that produce the stored bit patterns take hours of processing per word; it's very difficult for you to program your own custom vocabulary.

Differential PCM

We can actually reduce the amount of data stored for reproduction of speech by using a concept related to delta modulation as follows.
 When the speech waveform is being sampled, for each sample a value is stored that represents the amplitude difference between samples.
 This scheme, called differential pulse-code modulation, or DPCM, allows more that a single bit of difference between stored samples, accommodating more variation in the input waveform before severe distortion sets in. The DPCM value can be expressed as a fraction of the allowed input range or the absolute difference between samples (see figure 4).

Fig.4

Differential pulse-code modulation (DPCM) is an attempt to reduce the amount of data stored or transmitted, as compared with regular PCM. For each sample, the difference between the previous PCM code and the current code is expressed in terms of a fixed quantization value Ar (delta-r), which must be chosen with attention to the characteristics of the source waveform. If too large or small a quantization value is used, compliance errors occur.

DPCM exhibits some of the same limitations as simple delta modulation but to a lesser degree. Only when the difference between samples
is greater than the maximum DPCM encoding value will distortion (called a compliance error) occur. Then the only solution is to reduce the
input bandwidth or raise the sampling frequency.

ADPCM Is a specialized form of PCM that offers significantly Improved intelligibility at lower data rates.

Adaptive Differential PCM

The real breakthrough in digitized speech is the technique known as adaptive differential pulse-code modulation (ADPCM), a specialized form of PCM that offers significantly improved intelligibility at lower data rates. This system was devised to overcome the defects of the delta-modulation techniques described thus far while still reducing the overall data rate and improving the output's compliance with the source waveform.

ADPCM improves upon DPCM by dynamically varying the quantization between samples depending upon their rate of change while maintaining a low bit rate, condensing 12-bit PCM samples into only 3 or 4 bits. (The variations in the quantization value are regulated with regard to the characteristic complex sine waves that occur in voice. The technique is therefore not applicable to other kinds of signals, such as square waves.)

In ADPCM, each sample's encoding is derived by a complicated procedure that includes the following steps:

 a PCM-value differential dn is obtained by subtracting the previous PCM-code value from the current value; the quantization value An (delta-n) is obtained by multiplying the previous quantization value times a coefficient times the absolute value of the previous PCM-code value; the PCM-value differential is then expressed in terms of the quantization value and encoded in four bits, as shown in figure 5.

Build an ADPCM Speech Analyzer/Synthesizer

- The Oki Semiconductor Corporation produces a number of integrated circuits (ICs) that perform ADPCM encoding and decoding. Of these, the MSM5218RS and the MSM5205RS are worthy of attention. The 5218 is designed to perform both storing and reproducing of digitized speech, while the 5205 provides only the reproducing function. Using these CMOS (complementary metal-xide semiconductor) components, we can put together a cost-effective speech-synthesis system that produces highly intelligible output and yet makes efficient use of memory.
- Figure 6 on page 40 is the block diagram of the MSM5218RS IC. It is designed to work with 12-bit analog-to-digital converters and contains both an ADPCM analyzer and synthesizer. An internal 10-bit D/A converter is provided to reconstruct the waveform where direct analog output is wanted, or the decoded PCM data may be routed to an external D/A converter. The schematic in figure 7 on pages 42 and 43 diagrams a speech-synthesis circuit built around this chip (see photo 2 on page 41). In the

circuit, a low-cost 8-bit A/D converter is used in place of a higher-resolution, more costly 12-bit converter. The Oki MSM5204RS 8-bit CMOS A/D converter, employed here, uses a successive capacitor ladder conversion system. It also incorporates a sample-and-hold stage that enables direct input of rapidly changing analog signals. An external clock signal provides timing for the chip; the clock's frequency is not critical and can be anywhere from 450 to 500 kHz.

Fig.5

Adaptive differential pulse-code modulation (ADPCM) improves upon DPCM by dynamically varying the quantization between samples, depending upon their rate of change, while maintaining a low bit rate, condensing 12-bit PCM samples into only 3 or 4 bits. In ADPCM, each sample's encoding is derived by a procedure that includes the following steps. A PCM-value differential dn is obtained by sub fracting the previous PCM-code value from the current value. The quantization value An (delta-n) is obtained by multiplying the previous quantization value times a coefficient times the absolute value of the previous PCMcode value. The PCM-value differential is then expressed in terms of the quantization value and encoded in four bits. The mathematical relations are shown here in figure 5a, whereas figure 5b shows a typical encoded waveform.

Fig.5b

• The frequency bandwidth of the signal input to the A/D converter is limited by an active low-pass filter, IC2, an Oki ALP-2 filter with a 1.7-kHz cutoff frequency. Attenuation is 18 dB per octave above the cut-off frequency. (Although frequencies up to 4 kHz can theoretically be captured with an 8-kHz sample rate, in this application the lower cutoff frequency gives better-sounding reproduction.)

A/D Conversion in Operation

Data conversion is started when the S CON (start conversion) line (pin 13) of the MSM5218 forces the write line (WR), pin 15) on the 5204 A/D converter into a lower state. After conversion is complete, the A/D read line (RD), pin 14) is brought low to latch the data onto the 5204's output lines. At a clock rate of 450 kHz, the 5204 completes the 8-bit conversion in approximately 73 microseconds. The digital representation of the input data from the 5204 is fed into a CD4014 serial-to-parallel converter (IC9) for transposition into the serial format required by the MSM5218's input. Because we are using an 8-bit converter and the MSM5218 expects 12-bit input, the four remaining low-order bits are clocked in as zeros by the CD4024 counter (IC7) and sections of the quad NAND gate (IC6). These components provide four extra SI-CK (serial input OR clock) pulses with zero-logic-level data.

Selectable Parameters

The MSM5218 can analyze or synthesize ADPCM speech using a variable sampling rate. Three internal preset VCLOCK rates can be selected, or an externally supplied signal up to 384 kHz can be used. The logic levels on the 5218's pins Si and S2 define the VCLOCK reference in both analysis and synthesis modes, as shown in the lower right corner of figure 7. The host computer, or any other external hardware, synchronizes itself with the 5218 by monitoring the state and transition timing of the VCLOCK signal (pin 1). In addition to selecting the VCLOCK rate, you can choose encoding of the ADPCM data in either 3 or 4 bits, depending upon the logic level on the 4B/3B line (pin 7). A logic 1 selects 4-bit ADPCM values.

Data Transfer and Rates

In the dual-function MSM5218, the data lines D0 through D3 are bidirectional and used either for output of analyzed ADPCM data (for storage) or for input to the speech-synthesizer circuitry. In the analysis mode (with pin 6 held high), the current encoded ADPCM value is available on D0 through D3 at the occurrence of the rising edge of VCLOCK. If you have set S1 and S2 for 8 kHz and 4B/3B for 4-bit data, the resulting bit rate is calculated as follows: 8000 X 4 bits = 32,000 bps

MSM5218 INTERNAL BLOCK DIAGRAM

Figure 6: Functional block diagram of the Oki Semiconductor MSMS218RS ADPCM integrated circuit.

- Remember that we originally calculated that a rate of 96,000 bps would be needed to reproduce speech with this same fidelity. (Here we used an 8-bit A/D converter for economy; the bit rate would be the same for a 12-bit converter.)
 With a slight sacrifice in fidelity, the bit rate can be reduced further. By selecting the 4-kHz sample rate and 3-bit ADPCM codes, a 12,000
- bps rate is achieved. This may still sound like a lot of data, especially when you compare it to phoneme and LPC (linear-predictive coding) speech synthesizers like the Votrax SC-1A and the Digitalker, which by comparison use data rates of 70 to 1000 bps. The difference, of course, is speech quality and intelligibility. A phoneme or LPC synthesizer generates its own sounds and forms them into words. An ADPCM synthesizer, on the other hand, retains the inflection and intonation of the original human voice. With ADPCM, as with an analog recording, it's possible to have a voice output that reproduces the regional accents of the human speaker.

 The circuit of figure 7 can be used as both an analyzer and a synthesizer. Both subsystems function concurrently when the MSM5218 is in the analysis mode; the results, the reconstructed waveform, can be heard in real time (delayed by 3 VCLOCK periods). In figure 7, this output is smoothed by a low-pass filter and externally amplified to drive a speaker.

Fig. 7

Fig. 7

Fig. 7

An ADPCM speech analysis and synthesis (storage and reproduction) circuit built around the Oki MSM5218RS chip. A low-cost 8-bit A/D converter is used in place of a higher-resolution and more costly 12-bit converter. The Oki MSM5204RS 8-bit CMOS A/D converter, used in this circuit, contains a successive-capacitor-ladder conversion system. It also incorporates a sample and hold stage that enables direct input of rapidly changing analog signals. An external clocksignal provides timing for the chip; the clock's frequency is not critical and can be anywhere from 450 to 500 khz. The frequency bandwidth of the signal input to the A/D converter is limited by an active low-pass filter, IC2, an Oki ALP-2 filter with a 1.7-kHz cutoff frequency and attenuation of 18 dB per octave above the cutoff frequency.

Use of the ADPCM Circuit

As I said at the beginning, the purpose of this project is to create intelligible machine-generated speech. With the circuit of figure 7 connected to a Z80-based computer, and using the LOAD routine in the program of listing 1 (the algorithm shown in the flowchart of figure 8), you can analyze and store 10 seconds of speech (or 20 seconds at the 4-kHz sample rate).

Flowchart Fig. 8

Algorithm of the LOAD routine in the program of listing 1. Used with the circuit of figure 7, LOAD takes analog voice signals from a microphone or other source and stores them in ADPCM-encoded form in user memory.

The program simply turns on the synthesizer by lowering the reset line and then observing VCLOCK. At every negative-going transition it reads a 4-bit ADPCM nybble (there are 2 nybbles per byte) and stores it in a memory-resident table.
 For experimental purposes I set this table to occupy a rather large region of user memory (40K bytes). For most practical applications, you might prefer to store segments of speech on disk and load them into memory in smaller increments.
 Once some speech has been stored, you can play it back using the DUMP routine from listing 1 (whose algorithm appears in figure 9).

	00010 ; 00020 ; THES	E ROUTINES ARE	ISED TO ALLOW A Z-80		
	00030 ; BASE	D MICRO TO LOAD	AND DUMP THE 4 BIT		
	00040 ; NYBB 00050 ;	LES CREATED BY 1	THE OKI ADPCM CHIP.		
		I/O PORT IS USP	FOR BOTH INPUT AND		
			FOR THE PORT IS AS		
	00080 ; FOLL	OWS :			
	00090 ;				
	00100 ; 00110 ; B7	B6 B5 B4	B3 B2 B1 B0		
	00120 ;	00 05 04			
	00130 ;		D3 D2 D1 D0		
	00140 ;	Statistics and			
	00150 ; 00160 ;	and the set of the set	CLOCK ON INPUT, RESET ON OUTPUT		
	00170 ;		ON DEFET		
	00180 ; .	* * UNI	ISED		
	00190 ;				
	00200 ; 00210 ; SINC	THE MASTER OF	OF OF THE OVE CHIE IS		
	00220 : USED	BY THIS PROGRAM	OCK OF THE OKI CHIP IS M, ANY OF THE CLOCK		
	00230 ; RATE	S MAY BE SELECT	DIFYING		
	00240 ; THIS				
	00250 ; 00260 ; AT 8		LL 4K BYTES PER SECOND.		
	00270 ; 41 0		TAS AN DITES FER SECOND.		
	00280 ;				
000	00290	ORG 4000H	; START AT 4000H ON D/G CPU.		
000 000 F5	00300 LOAD 00310	BQU S PUSH AF	; SAVE ANY REGS		
001 C5	00320	PUSH BC	THAT I WILL CLOBBER		
002 85	00330	PUSH HL	: DURING THE ROUTINE		
003 2641	00340	LD H,41H	BUFFER STARTS AT		
005 2200 007 06DF	00350 00360	LD L.OOH LD B.ODFH	; 4100H ; AND ENDS AT DEODH		
001 0001	00370 ;	SV B. OVEN	; AND ENDS AT DEODH		
	00380 ;				
009 3600	00390	LD A, OOH OUT (11H),A	; PICK UP O.		
00B D311	00400 ;	OUT (11H),A	; AND TURN OFF RESET TO ADPCM		
00D CD2740	00420 GOOP1	CALL NIN	; BIT UP NYBBLE FROM ADPCM		
010 07	00430	RLCA	; PUT THE		
011 07 012 07	00440	RUCA	; NYBBLE AT THE		
013 07	00450	RL CA RL CA	TOP OF THE REGISTER.		
014 4F	00470	LD C.A	AND SAVE IN THE C REG		
015 CD2740	00480	CALL NIN	: PICK UP ANOTHER NYBBLE		
018 81	00490	OR C	; COMBINE WITH SAVED NYBBLE		
019 77 01A 23	00510	LD (HL),A INC HL	; AND SAVE IN THE BUFFER ; STEP TO NEXT LOCATION		
018 73	00520	GD A,B	PICK UP END POINTER		
OIC BC	00530	CP H	: ARE WE AT THE END ?		
01D 2088	00540	JR NZ,LOOP1	: NO, DO ANOTHER		
01F 3EFF 021 D311	00550 00560	D A, OFFH	; YES, PICK UP ALL 1'S ; AND RESET THE ADPCM		
023 E1	00570	OUF (11H),A POP HL	; AND RESET THE ADPON ; RECOVER THE		
024 C1	00580	POP BC	; SAVED REGISTERS		
025 F1	00590	POP AF	; WE SCRAMBLED		
026 C9	00600 ;	RET	; AND REFURN TO THE CALLER.		
	00620 ;				
	00630 ;				
027	00640 NIN	EQU \$			
027 DB11	00650 INHIW	IN A,(11H)	; PICK UP INPUT FROM ADPCM		
029 CB67	00660	BIT 4.A	: CHECK FOR A 1 ON THE CLOCK ; WAIT FOR ONE TO COME		
02B 28FA 02D DB11	00670 00630 INLOW	JR Z, INHIW IN A, (11H)	: PICK UP INPUT FROM ADPCM		
02F CB67	00690	BIT 4,A	: CHECK FOR A O ON THE CLOCK		
031 28FA	00700	JR Z, INLOW	; WAIT FOR ONE TO COME		
	00710 ; 00720 ; WHEN A 1 TO O TRANSITION HAS OCCURRED, THE DATA				
	00720 ; WHE 00730 ; IN	THE A REG IS TH	E NYBBLE WE WANT TO STORE.		
	00740 ;				
4033 860F	00750	AND OFH	; MASK OFF THE HI BITS		
			Listing 1 continued on page		

Listing 1 continued

4035 C9	00760	RET	; AND RETURN TO CALLER
	00770 ;		
	00780 ;		
	00790 ;		
	00800 ;		
	00810 ; 00820 ;		
	00830 ;		
4036	00840 DUMP	EQU S	
4036 F5	00850	PUSH AP	; SAVE THE REGS
4037 C5	00860	PUSH BC	; JUST LIKE
4038 E5	00870	PUSH HL	; BEFORE
4039 2641	00880	LD H, 41H	SET UP START
4038 2200 4030 0607	00890	LD B ODFH	ADDRESS OF BUFFER
403F 3800	00910	LD H, 41H LD L, OH LD B, ODFH LD A, OOH	: PICK UP ALL O'S
4041 D311	00920	DUT (11H),A	AND TURN OFF RESET TO ADPCM
	00930 ;		
	00940 ; 00950 LOOP2		
4043 7E	00950 00085	GD A, (HL)	; PICK UP STORED DATA BYTE
4044 E6F0	00950 00970	AND OFOH	; ISOLATE THE UPPER HYBE ; AND SWING
4046 07 4047 07	00330	RLCA RLCA	; IT TO
4048 07	00930	RLCA	THE LOWER
4049 07	01000		, avan é
404A C06040	01010	RECA CALL NOUT LD A.(HL) AND OFH	
4040 7E 404E E60F	01020	LD A, (HL)	: PICK JP THE BYTE AGAIN
404E 260F	01030	AND OFH	
4050 CD6040	01040	CALL NOUT	WRITE IT TO THE ADPCM STEP TO NEXT BUFFER POSITION
4053 23 4054 78	01050 01060	INC HL	PICK UP END OF BUFFER POINTER
4055 BC	01070	C.C. U.	. ADD JO TURDE VET 2
4056 20EB	01050	JR NZ.LOOP2	NO. DO SOME MORE PICK UP ALL 1'S TORN ON RESET TO ADPCM RECOVER THE RECS THAT WR
4058 38FF	01090 01100	LD A, OFFH	FICK UP ALL 1'S
405A D311	01100	OUT (11H),A	; TUPN ON RESET TO ADPCM
405C E1	01110	POP HL	; RECOVER THE
405D C1	01120	POP BC POP AF	REGS THAT WE HAVE CLOBBERED
405E F1 405F C9	01130	RET	; HAVE CLOBBERED ; AND RETURN TO CALLER
4051 05	01150 ;		,
	01160 ;		
	01170 :		
4060	01180 NOUT	EQU \$	
4060 47 4061 DB11	01190 01200 0LOW	LD C.A	; SAVE A FOR LATER ; PICK UP ADPCM BYTE
4061 0511 4063 CB67	01210	IN A,(11H) BIT 4,A	. TEST FOR O BIT
4065 20FA	01220	JR NZ, OLOW	TEST FOR O BIT
4067 DB11	01230 OHIM	IN A,(11H)	; PICK UP ADPCM BYTE
4069 CB67	01240	BIT 4,A	; TEST FOR 1 BIT
4068 28FA	01250	JR Z,OHIW	; WAIT FOR ONE TO COME
	01260 ;		
	01280 ; WHE	TO THE ADPCH.	ION IS DETECTED, WE PUT OUR DATA
	01290 ;	IS THE ADPORT	
406D 79	01300	LD A.C	: RECOVER THE SAVED DATA
406E D311	01310	OUT (11H) .A	; RECOVER THE SAVED DATA ; WRITE TO THE ADPCH - AND 20 BACK TO CALLER
4070 C9	01320	RET	WRITE TO THE ADPCH AND GO BACK TO CALLER
	01330 ;		
	01340 ;		
	01350 ;		
	01360 ; 01370 ;	AND OF LOAD/DUME	ROUTINES
	01380 ;	and or gonerborn	Nov and
	01390 ;		
0000	01400	END	
DODDO TOTAL	ERRORS		
DUMP 40 36	00340		
INHIN 4027	00650 00670	a state of the state of the state	
	00630 00700		
LOAD 4000 LOOP1 4000	00300 00540		
	00950 01030		
NEN 4027	00640 00420	00480	
NOUT 4060	01130 01010		
3414 4067 3604 4061	01230 01250 01220		

With the MSM5218 set to the synthesis mode, the ADPCM codes are sequentially loaded on each rising edge of VCLOCK.
 If you want to store some speech permanently and then play it back in a dedicated application (as an annunciator, for instance), you won't need the analysis part of the circuit after the ADPCM codes have been stored.

For such cases you may wish to use the synthesize-only circuit of figure 10, which uses the 18-pin MSM5205RS ADPCM-synthesis chip instead of the dual-function 24-pin 5218 (see photo 3 on page 48). The 5205's synthesis capabilities are equal in every way to thoses of the 5218, but the 5205 saves the expense and complication of the analysis section. The resulting 2-chip circuit, the parts of which cost less than \$15, can be easily manufactured for a variety of applications.

One significant aspect of ADPCM speech synthesis is the ease of producing a custom vocabulary.

Photo 3

I was pleasantly surprised at the fidelity using ADPCM at 32,000 bps. It was still more intelligible than the majority of current synthesis techniques even at 12,000 bps. While testing the software I attached the input of the analysis unit to an FM radio. Even when using the 1.7-kHz filters, I was surprised how good even music sounded.

Fig. 10

A voice-reproduction circuit built around the Oki MSM5205RS speech synthesis chip. This circuit is useful in applications where you need a fairly inexpensive means of reproducing a custom vocabulary. You can store your vocabulary with the circuit of figure 7., and load the encoded speech into this simple circuit for output

Summary of ADPCM Synthesis

Probably the most significant aspects of ADPCM speech synthesis are the simplicity of the hardware and the ease of producing a custom vocabulary. You don't have to send a word list and recording tape to a manufacturer and wait for the com pany to spend days doing a Fourier analysis of the tape. To produce a ROM (read-only memory) containing your custom vocabulary, you can use merely a microphone and a simple LOAD/DUMP routine. It may require 4 to 5 times more memory space than other high-intelligibility speech-synthesis schemes, but the price of that memory is minuscule compared to the cost of producing vocabularies for the other schemes.

Fig. 9 Algorithm of the DUMP routine from listing 1.

Figure 9: Algorithm of the DUMP routine from listing 1. This routine takes the stored ADPCM-encoded speech from memory and causes the circuit of figure 7 to reconstruct the voice waveforms.

Future Applications of ADPCM

• We've looked at ADPCM here only as it relates to voice synthesis, but in actuality, the possible applications of ADPCM to speech recognition prompted my initial interest. The first phase of any speech-recognition technique is digitizing the waveforms and getting them into the computer for analysis, compression, and comparison. My previous article on voiceprints (reference 5) demonstrated the large quantity of hardware necessary to merely condition the waveform for traditional speech-recognition methods. With ADPCM and these Oki chips, we have an inexpensive (under \$30) circuit for digitizing voice waveforms and presenting them to a computer in a form that it can digest. Even though 1500 to 4000 bytes of raw data per second of speech stream into the comparison of all the data, or perhaps there exists some applicable compression algorithm that might reduce one second of data to 200 bytes or so. The final compacted data would not be for reconstruction of the original waveform but rather stored as a signature of the input word (derived from an ADPCM code table) for use in comparison.

We have accomplished the first step and now have means to place the ADPCM codes in memory. In the course of the next few months I will be experimenting with various compression and comparison techniques in hope of developing a practical speech-recognition project. But if by chance you happen upon the solution to the problem overnight, let me know.

References

Beferences 1. Ciarcia, Steve. "Build a Low-Cost Speech Synthesizer Interface." June 1981 BYTE, page 46. Editor's Note: Steve often refers to previous Circuit Cellar articles as reference material for Circuit Cellar articles as reference material for Circuit Cellar articles are available in reprint books from Spetember 1982 BYTE, page 64; Part 2, October 1982 BYTE, page 64; Part 2, October 1982 BYTE, page 64; Part 2, October 1982 BYTE, page 64; Part 2, September 1981 BYTE, page 38. Ciarcia, Steve. "Build an Unlimited Vocabulary Speech Synthesizer." September 1981 BYTE, page 38. Ciarcia, Steve. "Taik to Me: Adda Voice to Your Computer for 35." June 1979 BYTE, page 142. Ciarcia, Steve. "Use Voiceprints to Analyze Speech." March 1982 BYTE, page 50. 6. General Explanation of Oki ADPCM Speech Synthesis LSI (MSM5205R); Tokyco Oki Electric LGI, 1982. Digitalker is a trademark of National Semiconductor Corporation. 7. Mier, Edwin E. "Competitors Fear AT & T's New \$1 Billion Scheme." Data Gage. 39. To receive a complete fist of Concrets Circuit Cellar proget kits available from the zeder wrywer communications, December 1982, page

Parts

For those of you who would like to construct an ADPCM analyzer/synthesizer, the chips are readily available from Oki Semiconductor Corporation as part of an experimenter's kit. Included are:

Oki MSM5218 analyzer/synthesizer
Oki MSM5205 synthesizer
Oki MSM5204 8-bit A/D converter
384-kHz ceramic resonator
Oki MSM5128-15 CMOS 2K by 8-bit static RAMs (eight)
ALP-2 hybrid 1.7-kHz filter
ALP-4 hybrid 3.4-kHz filter
The package is called the Real-Voice Application Kit. It sells for \$89 postpaid (check or money order only—no CODs or company purchase orders)

Oki Semiconductor, Inc. 1333 Lawrence Expressway, Suite 401 Santa Clara, CA 95051 telephone: (408) 984-4842 TWX: (910) 338-0508

and can be ordered from:

Back Back to Richard Davies NLnet Home Page